

Möglichkeiten des Einsatzes von faseroptischen Sensoren zur Erfassung von Prozessgrößen beim FDM-Drucken sowie für die Zustandserfassung auslegungsrelevanter Kunststoffbauteile

> TP2.2. FOS4FDM <

Martin Ganß, Andreas Kirchner, Carsten Könke

Materialforschungs- und -prüfanstalt Weimar an der Bauhaus-Universität Weimar

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

1. Motivation

- Einsatz von 3D-Druckern im Modellbau, Forschung und Industrie
- Herstellung von Mustern, Prototypen und "Werkzeugen" aus Kunststoff mittels 3D-Druck ist Stand der Technik

FFP/1

1. Motivation

- Einsatz von 3D-Druckern im Modellbau, Forschung und Industrie
- Herstellung von Mustern, Prototypen und "Werkzeugen" aus Kunststoff mittels 3D-Druck ist Stand der Technik
- Fertigung auslegungsrelevanter Bauteile aus Kunststoff mit akzeptablen mechanischen Eigenschaften und in gleichbleibender Qualität ist schwierig
- Probleme: Risse, Poren, Verzug, Schichtablösung, schlechte Schichthaftung, Schrumpf (=Eigenspannung),
- Mechanisches Verhalten ?

"Hält oder hält nicht?"

FFP/

layers_fig1_303561386

1. Motivation

Auslegungsrelevante Bauteile aus Kunststoff im 3D-Druckverfahren - Möglichkeiten

VERBUNDWERKSTOFFE mittels Einarbeitung von "Füllstoffen"

Carbon-Endlosfasern

- Lastgerechte Verstärkung
- Auslegung mit FEM

FFP/1

2. Sensorik – Faseroptische Sensorik

- Faseroptische Sensoren = Lichtwellenleiter
- optische Temperatur- und Dehnungssensoren bereits in der Anwendung, Monitoring von Strukturen (z.B. Brücken, Bauwerke)

2. Sensorik – Faseroptische Sensorik

- Faseroptische Sensoren = Lichtwellenleiter
- optische Temperatur- und Dehnungssensoren bereits in der Anwendung, Monitoring von Strukturen (z.B. Brücken, Bauwerke)

>>> Vorteile für die Integration in den 3D-Druck

- **I** Faserförmige Geometrie
- □ µm-dünne Sensorfasern in Strukturen integrierbar
- hohe Anzahl von Messpunkten
- 回 simultane Messwerterfassung
- Dehnungsmessungen mit Längenänderungen bis zu >3 % möglich
- große Messstrecken mit einer Faser realisierbar

Rayleighstreuung mit Frequenzbereichsreflektometrie (OFDR)

9

3. Sensormessungen während des 3D-Drucks

Versuchsaufbau – Prozesserfassung (Phase1)

30.01.2020

3. Sensormessungen während des 3D-Drucks

Versuchsaufbau – Prozesserfassung (Phase1)

Validierung des faseroptischen Messverfahrens

□ FBG gekapselt in µm-Glaskapillare - Temperaturmessung

Werkstoff: ABS Düsentemperatur: 240 °C Tisch: 70 °C (55 °C) Geometrie: 2 x Quader Sensor: 1 FBG, 8mm, Ø=195 μ m Glaskapillare: Ø_A=400 μ m

Validierung des faseroptischen Messverfahrens

■ FBG gekapselt in µm-Glaskapillare - Temperaturmessung

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \begin{tabular}{ll}$

FFP/1

Geometrie: 2 x Quader

Glaskapillare: $Ø_{\Delta}$ =400 µm

Sensor: 1 FBG, 8mm, Ø=195 µm

Validierung des faseroptischen Messverfahrens

■ FBG gekapselt in µm-Glaskapillare - Temperaturmessung

FBG-Sensor in µm-Kapillare

Werkstoff: ABS Düsentemperatur: 240 °C Tisch: 70 °C (55 °C) Geometrie: 2 x Quader Sensor: 1 FBG, 8mm, Ø=195 μ m Glaskapillare: Ø_A=400 μ m Temperatur aus $\Delta\lambda$ der FBG-Sensoren berechnet

Validierung des faseroptischen Messverfahrens

□ FBG direkt eingebettet – mechanische Dehnung & Temperatur

Werkstoff: ABS Düsentemperatur: 240 °C Tisch: 70 °C (55 °C) Geometrie: 2 x Quader Sensor: 1 FBG, 8mm, Ø=195 µm Kapillare: Nein

Validierung des faseroptischen Messverfahrens

■ FBG direkt eingebettet – mechanische Dehnung & Temperatur

FBG-Sensor

Temperatur aus $\Delta\lambda$ der FBG-Sensoren berechnet

MEN A

Kapillare: Nein

Validierung des faseroptischen Messverfahrens

■ FBG direkt eingebettet – mechanische Dehnung & Temperatur

Verteilt-messende faseroptische Sensoren

■ OFDR – mechanische Dehnungen und Temperatur

Verteilt-messende faseroptische Sensoren

■ OFDR – mechanische Dehnungen und Temperatur

Werkstoff: PET; Düsentemperatur: 240 °C; Tisch: 70 °C (55 °C); Sensor: verteilt, Ø=195 µm

Verteilt-messende faseroptische Sensoren

■ OFDR – mechanische Dehnungen und Temperatur

Sensorposition [mm]

Werkstoff: PET; Düsentemperatur: 240 °C; Tisch: 70 °C (55 °C); Sensor: verteilt, Ø=195 µm

4. Zustandserfassung 3D-gedrucktes Bauteil

FFP/1

Beispiel - Auslegungsrelevantes Bauteil

■ Carbonfaser-verstärkter Haken aus Kunststoff mit FBG-Sensor

4. Zustandserfassung 3D-gedrucktes Bauteil

FFP/1

Beispiel - Auslegungsrelevantes Bauteil

■ Carbonfaser-verstärkter Haken aus Kunststoff mit FBG-Sensor

4. Zustandserfassung 3D-gedrucktes Bauteil

Beispiel - Auslegungsrelevantes Bauteil

■ Carbonfaser-verstärkter Haken aus Kunststoff mit FBG-Sensor

5. Zusammenfassung

Integration von faseroptischen Sensoren in 3D-Druckprozess möglich

- Sensordaten mit hoher Datenqualität erfasst prinzipielle Machbarkeit nachgewiesen
- Direkteinbettung resultiert in Mischsignal aus Temperaturen und mechanischen Dehnungen

5. Zusammenfassung & Ausblick

Integration von faseroptischen Sensoren in 3D-Druckprozess möglich

- Sensordaten mit hoher Datenqualität erfasst prinzipielle Machbarkeit nachgewiesen
- Direkteinbettung resultiert in Mischsignal aus Temperaturen und mechanischen Dehnungen
- tieferes Verständnis zu Sensordaten erarbeiten weitere Validierung mit experimentellen Methoden und Simulation
- Bewertung der Möglichkeiten der direkten Prozessintegration
- Umsetzung der Sensorlösung in Demonstrator

ወ ወ

Danke für Ihre Aufmerksamkeit !

Vielen Dank an die Projektpartner, den Projektträger und das BMBF !

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM